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Abstract—In recent years, the development of quantum anneal-
ers has enabled experimental demonstrations and has increased
research interest in applications of quantum annealing, such as
in quantum machine learning and in particular for the popular
quantum Support Vector Machine (SVM). Several versions of
the quantum SVM have been proposed, and quantum annealing
has been shown to be effective in them. Extensions to multiclass
problems have also been made, which consist of an ensemble of
multiple binary classifiers. This work proposes a novel quantum
SVM formulation for direct multiclass classification based on
quantum annealing, called Quantum Multiclass SVM (QMSVM).
The multiclass classification problem is formulated as a single
quadratic unconstrained binary optimization problem solved
with quantum annealing. The main objective of this work is
to evaluate the feasibility, accuracy, and time performance of
this approach. Experiments have been performed on the D-Wave
Advantage quantum annealer for a classification problem on
remote sensing data. Results indicate that, despite the memory
demands of the quantum annealer, QMSVM can achieve an
accuracy that is comparable to standard SVM methods, such as
the one-versus-one (OVO), depending on the dataset (compared
to OVO: 0.8663 vs 0.8598 on Toulouse, 0.8123 vs 0.8521 on
Potsdam). More importantly, it scales much more efficiently with
the number of training examples, resulting in nearly constant
time (compared to OVO: 85.72s vs 248.02s on Toulouse, 58.89s vs
580.17s on Potsdam). This work shows an approach for bringing
together classical and quantum computation, solving practical
problems in remote sensing with current hardware.

Index Terms—Support Vector Machine (SVM), Quantum
Computing (QC), Quantum Annealing (QA), classification, Re-
mote Sensing (RS)

I. INTRODUCTION

IN the context of Earth Observation (EO) [1], there is
a growing availability of data acquired by heterogeneous

Remote Sensing (RS) sources. Many applications are currently
benefitting from RS data, e.g., agriculture, green energy devel-
opment and urban monitoring. The devices and software for
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TABLE I
ABBREVIATIONS USED IN THE ARTICLE.

AQC adiabatic quantum computation
BDSD band-dependent spatial-detail

CS Crammer-Singer
DAG directed acyclic graph
DSM digital surface model
EO Earth observation
ML machine learning
OVA one-versus-all
OVO one-versus-one
QA quantum annealing
QC quantum computing

QML quantum machine learning
QMSVM quantum multiclass support vector machine
QSVM quantum support vector machine
QUBO quadratic unconstrained binary optimization

RS remote sensing
SVM support vector machine

data processing have to match this trend in order to extract
information from the collected data in a timely manner.

Quantum Computing (QC) [2], a computational paradigm
based on the postulates and laws of quantum mechanics,
has proved the potential to reach an exponential algorithmic
speedup with respect to classical computation under certain
assumptions [3], [4]. Among the quantum computational mod-
els defined in the literature, two broadly employed models
can be identified. The quantum circuit model [5], similarly
to the classical circuit model, is based on circuits, gates
and measurements applied to qubits (quantum bits). Adia-
batic Quantum Computation (AQC) [6], [7] aims at solving
optimization problems by exploiting the time evolution of a
quantum system satisfying the requirements of the adiabatic
theorem [8]. Despite their differences, the two models have
been proven to be computationally equivalent [9]. The focus
of this work is Quantum Annealing (QA) [10], [11], a heuristic
search approach based on AQC, since commercially ready
quantum annealers are available for analyzing the disruptive
potential of QC.

Quantum Machine Learning (QML) [12], [13] is a research
area working on QC algorithms applied to Machine Learning
(ML) tasks, with the purpose of obtaining a computational
speedup or a prediction accuracy increase. QML methods
based on QA have proven to outperform classical ML in
selected applications with limited training examples, for ex-
ample in computational biology [14]. Recent studies have
analyzed how QML can be integrated into EO tasks. In
[15], [16], [17], [18], circuit-based quantum neural networks
have been trained for multispectral image classification. The
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work of Otgonbaatar and Datcu has covered different aspects
of circuit-based QML for EO, e.g., natural data embedding
[19], parameterized quantum gates [20] and transfer learning
[21]. Circuit-based quantum kernels have been applied to
binary [22], [23], [24] and multiclass [25] RS image clas-
sification. QA has also found a place in EO for solving
specific optimization problems. In Synthetic Aperture Radar
(SAR) imaging, problems related to system design [26] and
phase ambiguity [27] have been addressed. In the context of
QML, a feature selection method for hyperspectral images
has been proposed [28], and a QA-based Quantum Support
Vector Machine (QSVM) method has been successfully used
for binary classification of multispectral images [29] [30].

The Support Vector Machine (SVM) is an efficient
and theoretically-grounded algorithmic approach in statistical
learning theory. Different versions and formulations of the
SVM can be found in the literature for a variety of tasks and
applications, e.g., pattern recognition, computer vision, image
analysis and business intelligence [31]. SVM has also been
proven to be effective in EO pixel-wise image classification
[32].

Defining a SVM framework for multiclass classification is
a non-trivial task. Two different approaches can be followed
[33]. The multiple-step (or indirect) approach reframes the
problem by defining an ensemble of multiple binary SVM clas-
sifiers and multiple classification outputs. The most common
methods are the one-versus-one (OVO), one-versus-all (OVA)
and the Directed Acyclic Graph (DAG) SVM. In the OVO
method, each pair of classes defines a SVM classifier. The
outcomes of each classifier are usually combined with a “max
wins” strategy which determines the final prediction. Similarly,
in the OVA method, a classifier for each class vs. the remaining
classes is defined, and the class with highest score is assigned.
The QSVM algorithms for multiclass classification available
in the literature, e.g., [34], [35], [36], follow the multi-step
approach. They are defined as ensembles of binary QSVM
classifiers, which can be full quantum [37], [38], quantum-
kernel-based [39] and QA-based [40] formulations.

The single-step (or direct) approach for multiclass clas-
sification defines a single optimization step on the whole
training set, which finds boundaries between all classes in one
pass. The Crammer-Singer (CS) SVM, proposed in [41], is
an example of single-step approach. It showed a comparable
to better performance on benchmark datasets with respect to
OVO, OVA, and the Weston-Watkins [42] multiclass SVM
[43]. However, a limitation of this method is the complexity
of the training phase, due to the high number of optimization
variables, which makes this approach impractical. In the same
work, simplified formulations are proposed, which reduce the
problem size and enable better performances, although at the
cost of optimality.

The main objective of this work is to propose a novel
approach, specifically Quantum Multiclass SVM (QMSVM),
by reframing the original formulation of the CS SVM, thus
enabling the optimization step to be performed using a QA
algorithm. This work studies the computational capability
offered by the available quantum annealers and assesses the
feasibility of a QA-based single-step SVM approach. Experi-

ments are performed on a real quantum annealer, i.e., D-Wave
Advantage [44], [45], in order to validate the algorithm on
current hardware. As quantum annealers are a rapidly evolving
technology, it is important to analyze their current status and
their potential, understanding how they can be used to solve
real problems in RS. For this purpose, it is reasonable to
consider the CS SVM implementation in our work, as it is
a computationally intensive task that would benefit from an
enhanced performance. The performance is evaluated both in
terms of accuracy and execution time, both relevant aspects
in practice. The code repository of the algorithm is made
available for reproducibility1.

The paper is structured as follows. In Sect. II, the theoretical
background related to quantum annealing is summarized. In
Sect. III, the mathematical formulation of QMSVM is pre-
sented. In Sect. IV, the algorithm validation setup is described
and the results are shown. In Sect. V, the main findings are
discussed. In Sect. VI, conclusions related to the presented
work are drawn.

II. BACKGROUND

A. Quantum Annealing and QUBO

To understand the underlying working principles of D-Wave
quantum annealers, a brief introduction is needed. In AQC [6],
[7], the forces acting in a quantum system are described by a
time-varying HamiltonianH(t). The time evolution of the state
of a quantum system |φ(t)⟩ is described by the Schrödinger’s
Equation:

iℏ
∂ |φ(t)⟩

∂t
= H(t) |φ(t)⟩ (1)

where i is the imaginary unit and ℏ is the reduced Planck
constant. During the adiabatic evolution, the Hamiltonian
gradually transitions from the initial Hamiltonian HI to the
final Hamiltonian HF :

H(t) = s(t)HI + (1− s(t))HF (2)

where s(t) is a function modeling the transition, such that
s(0) = 1 and s(tf ) = 0 after a certain elapsed time tf . Given
the assumptions of the adiabatic theorem [8], during the time
evolution, the quantum system remains at ground state, i.e.,
the state with lowest energy associated with the Hamiltonian.
The idea in AQC is to encode the desired result as the ground
state of the final Hamiltonian HF .

QA falls into the category of AQC algorithms. More pre-
cisely, it is a heuristic approach for solving combinatorial
optimization problems. In this case, the Hamiltonian of the
system is defined as:

H(t) = HF + Γ(t)HD (3)

where HF is the final Hamiltonian, Γ(t) is the transverse field
coefficient as a function of time t, and HD is the transverse
field Hamiltonian (also called disorder Hamiltonian). HF

encodes the objective function and its ground state is the
solution of the optimization problem. Γ(t) is a decreasing
function, equal to 0 for t = tf . It controls the contribution

1https://gitlab.jsc.fz-juelich.de/sdlrs/qmsvm
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(a) QUBO graph (b) Embedding of the QUBO graph on a Pegasus
architecture

Fig. 1. Graphical representation of the minor embedding step. In the graph shown in (a), each node represents a binary variable, and each edge represents a
logical connection between two variables of the QUBO problem. In (b), each color represents the corresponding variable embedded into a qubit chain. Source:
[6]

of HD, which enables traversability of the solution space,
making the optimization process escape local minima. As
for this aspect, QA presents a similarity with simulated an-
nealing [46], where the temperature parameter T resembles
the role of Γ(t). In this framework, the assumptions of the
adiabatic theorem are relaxed, i.e., there is no requirement
for the quantum system to be closed and to operate in the
ground state. The implementation of QA provided by D-Wave
quantum annealers enables the solution of a specific type of
optimization problems, called Quadratic Unconstrained Binary
Optimization (QUBO) problems. A QUBO problem is defined
as:

minimize
∑
i<j

aiQijaj (4)

where ai ∈ {0, 1} are the binary variables of the problem and
Q an upper-triangular matrix called QUBO matrix.

B. Minor Embedding

The hardware architecture of D-Wave quantum annealers
poses a limitation on the QUBO problems that can be solved.
The most relevant specifications are the number of qubits, the
number of couplers (i.e., the physical connections between
pairs of qubits) and the qubit connectivity (i.e., the average
number of couplers connected to a qubit). D-Wave Advantage
is based on the Pegasus architecture and has approximately
5000 qubits, 35000 couplers, and a qubit connectivity of 15
[45]. When the QUBO problem is submitted to a quantum
annealer, a step called minor embedding [47] is performed, in
which each binary variable of the problem ai is embedded into
a qubit chain. The main requirement is maintaining the logical
structure of the problem, described by Q. Each element of the
QUBO matrix Qij represents a logical relation between the
variables ai and aj . The coefficients Qij are mapped to the
strength of the couplers connecting the qubit chains assigned to

the variables ai and aj . The existence of such an embedding is
a requirement for a problem to be solved by the annealer, i.e.,
constraints on the dimension and the structure of the QUBO
problem need to be satisfied. In Fig. 1, the embedding of a
QUBO problem in graph form is shown.

III. QUANTUM MULTICLASS SVM FORMULATION

In this section, a novel algorithm called QMSVM is de-
scribed. It is based on a reformulation of the Crammer-Singer
(CS) SVM [41] as a QUBO problem. The followed steps are
adapted from the QSVM proposed in [40], with the addition
of a solution combination method. As a starting point, the CS
SVM formulation is described in the following.

A. Crammer-Singer Multiclass SVM

In a supervised multiclass classification problem, let N be
the number of training examples, C the number of classes,
Xtr = {xn} the feature vectors of dimension F , Y tr = {yn}
the labels. The training consists in the solution of the following
quadratic program:

minimize F (T ) =
1

2

N−1∑
n1,n2=0

K(xn1
,xn2

)

C−1∑
c=0

τn1cτn2c

− β

N−1∑
n=0

C−1∑
c=0

δcyn
τnc

(5)

subject to
C−1∑
c=0

τnc = 0 ∀n, τnc ≤ 0 ∀n, ∀c ̸= yn.

(6)
where T = [τnc] is the matrix of the NC problem variables,
with n = 0, ..., N − 1, c = 0, ..., C − 1 and τnc ∈ [−1, 1], δij
is the Kronecker delta and β a regularization parameter.

D-Wave Advantage is unable to directly solve Eq. (5)-
(6). Therefore, a reformulation of Eq. (5)-(6) as a QUBO
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Fig. 2. Flowchart of the QMSVM algorithm. A training set Xtr is given as input to the QA step, which obtains a set of S solutions to the training problem.
The solutions are then combined with a weighted average based on the accuracy performance on a validation set Xval of the classifiers obtained by the single
solutions. The final classifier is then used to generate classification maps of test images.

problem is necessary. The followed steps are: choosing a
binary encoding (Sect. III-B), defining the penalty terms (Sect.
III-C), deriving the QUBO matrix including the results of the
previous steps in the cost function (Sect. III-D), and defining
a solution combination method (Sect. III-E).

B. Binary Encoding

The first step consists in defining the binary variables ai
of the QUBO problem. In the CS formulation, the problem
variables τnc are real numbers. The idea is to discretize the
solution space using uniform sampling and represent each
value as a set of B binary variables. First, the following
intermediate variable is defined:

σnc =

B−1∑
b=0

2banCB+cB+b. (7)

σnc is an integer value in [0, 2B−1] represented by the binary
encoding {anCB+cB+b}, b = 0, . . . , B−1. Then, the problem
variables τnc can be defined from σnc as:

τnc = −1 +
2

2B − 1
σnc = −1 +

2

2B − 1

B−1∑
b=0

2banCB+cB+b.

(8)
With this definition, it can be proven that each value of τnc
lies in [−1, 1] and the interval is uniformly sampled.

Fig. 3 shows the sampling of Eq. (8) for B = 2, i.e.,
in the case each sample of τnc is represented by 2 binary
variables, indicated above each sample. Since the total num-
ber of problem variables is NC (each variable is associ-
ated with an example and a class), the whole optimization
space can be represented by a set of NCB binary variables
{a0, a1, ..., aNCB−1}.

σnc

0 1 2 3

{00} {01} {10} {11}

τnc

−1 0 1

{00} {01} {10} {11}

Fig. 3. Representation of the chosen variable sampling and encoding for
B = 2.

C. Penalty Terms

Another requirement is to include the constraints of Eq. (6),
as no constraints can be directly enforced in a QUBO problem.
A possibility is to add the constraints to the QUBO matrix
as weighted positive penalty terms. For the first constraint,
the penalty term needs to increase in the case the difference
between the value of the sum and 0 increases. In addition, a
penalty term needs to be associated with each training example
and with the same weight. Since a quadratic polynomial term
is required, the following penalty term is chosen:

P 1
n =

(
C−1∑
c=0

τn,c

)2

(9)

For the second constraint, which is an inequality, it is sufficient
to directly consider τnc as the penalty term associated with
each training sample and each class. A coefficient (1− δcyn

)
is attached to account for the case c = yn, in which the penalty
is zero:

P 2
nc = (1− δcyn

)τn,c (10)
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The final penalty term can be written as:

P =

N−1∑
n=0

P 1
n +

N−1∑
n=0

C−1∑
c=0

P 2
nc

=

N−1∑
n=0

(
C−1∑
c=0

τn,c

)2

+

N−1∑
n=0

(
C−1∑
c=0

(1− δcyn)τn,c

) (11)

Note that P 1
n and P 2

nc are included with the same weight. The
following reasons behind this choice can be listed:

• Considering two different weights would increase the
number of hyperparameters of the optimization problem
and the already high complexity of the tuning phase;

• The two constraints have to be both equally satisfied;
• The two penalty terms have approximately the same order

of magnitude, as τnc ∈ [−1, 1], so there is no imbalance
in values.

D. QUBO Matrix

The QUBO problem can be now written by adding to Eq.
(5) the penalty term in Eq. (11) multiplied by a weight µ
and substituting τi,j with the encoding in Eq. (8). The energy
function E can be written in the following form2:

E = F + µP =
∑

n1n2c1c2b1b2

an1CB+c1B+b1

Q̃n1CB+c1B+b1,n2CB+c2B+b2an2CB+c2B+b2 .

(12)

Q̃ is a symmetric matrix of size NCB × NCB. It can be
analytically derived by neglecting the terms not depending on
the binary variables and is equal to:

Q̃n1CB+c1B+b1,n2CB+c2B+b2 =

= δn1n2δc1c2δb1b2
2b1+1

2B − 1

(
−
∑
i

K(xn1 ,xi)

− δc1yn1
(β + µ)− 2Cµ+ µ

)

+ δc1c2
2b1+b2+1

(2B − 1)2
K(xn1

,xn2
) + δn1n2

2b1+b2+2µ

(2B − 1)2

(13)

The upper-triangular QUBO matrix Q can be computed
from Q̃ as:

Qij =


Q̃ij for i = j

Q̃ij + Q̃ji for i < j

0 otherwise
(14)

E. Solution Combination

Once the QUBO matrix is defined, the problem can sub-
mitted to the quantum annealer, assuming the existence of an
embedding. As the annealing process is performed multiple
times, depending on the value of num reads, the obtained
output is a set of num reads solutions. The best S solutions
are selected, i.e., Ti = [τnc]i, i = 0, . . . , S − 1, ranked by the

2In this formulation, a simplified notation for the sums is used, as the range
of the indices is unaltered and redundant.

value of the energy function E(Ti). During the experiments,
it has been noticed that there is no perfect correlation between
solutions with lower energy and better classification accuracy
of the obtained classifier. Note also that the solution space
investigated by the quantum annealing algorithm is discrete,
due to the variable sampling, so the obtained individual
solutions are likely to be sub-optimal. For these reasons,
a solution combination is performed in order to obtain an
optimal final solution. A weighted average is performed, where
the weights ws for each solution s are set according to the
prediction accuracy of the obtained classifiers on a validation
set {Xval, Y val}. In particular, the solutions above a certain
threshold accuracy are selected, and their weight is computed
applying the softmax function to multiplier ·accuracys, where
multiplier is a real value and accuracys is the accuracy of the
classifier defined by the s-th solution on the whole training set.
The rest of the weights are set to 0. The combined solution is
computed as:

T̄ =
1

S

S−1∑
s=0

wsTs. (15)

The resulting variables τ̄nc are then used to classify new
examples:

H(x) = argmax
c

{
N−1∑
n=0

τ̄ncK(x,xn)

}
(16)

Alg. 1 summarizes the implemented computational steps re-
quired for the training.

Algorithm 1 Quantum Multiclass SVM (QMSVM)
Input: Xtr, Y tr, Xval, Y val, C,B, β, µ, γ, S,multiplier
Output: T̄

QUBO matrix initialization, eq. (13)-(14)
1: Q← QUBO MATRIX(Xtr, Y tr, C,B, β, µ, γ)

Run annealing step and sample num reads solutions
2: T ← QUANTUM ANNEALING(Q)

Evaluate classifier on validation set, eq. (16)
3: for s = 1 to S do
4: Ŷ val[s]← H(Xval, Y val, T )
5: accuracy[s]← ACCURACY(Ŷ val[s], Y val)
6: end for

Weights calculation
7: threshold← THRESHOLD(accuracy)
8: for s = 1 to S do
9: if accuracy[s] < threshold then

10: accuracy[s]← 0
11: end if
12: end for
13: W ← SOFTMAX(multiplier · accuracy)

Solution combination, eq. (15)
14: T̄ ← COMBINE(T,W )
15: return T̄

IV. ALGORITHM VALIDATION

A. Experimental Setup

The QMSVM algorithm has been validated on a semantic
segmentation problem applied to multispectral RS images.
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TABLE II
DATASETS USED IN THE EXPERIMENTS.

Dataset Dimension Resolution Features Classes Training Set Test Set
SemCity Toulouse [48] 16 tiles, 3504× 3452 50 cm 8 bands C ≤ 7 N samples, tile 4 800× 800 area, tile 8

ISPRS Potsdam [49] 38 tiles, 6000× 6000 5 cm 4 bands + DSM C ≤ 5 N samples, tile 6 9 1000× 1000 area, tile 6 10

TABLE III
PARAMETERS SETUP.

Variable Name Value Description
C 3 Number of classes considered in the multiclass classification problem
B 2 Number of binary variables representing each problem variable τnc

β 0.1 Model related regularization parameter, introduced in Eq. (5)
µ 1 Weight of the penalty term P added to the energy function defined in Eq. (12)
γ 0.5 Gaussian kernel parameter, regulating its radius
N [50, 20000] Total number of training examples used in the training (multiple values analyzed)
M 60 Number of selected training examples, used to define the QUBO matrix Q submitted to the QA

num reads 1000 Number of times the annealing schedule is performed and how many solutions are sampled for each run
S 100 Number of solutions selected among the total number num reads, used for the solution combination

multiplier 10 Regulates the balance between higher and lower accuracy values over the combined solutions
max min ratio 5 Ratio between the maximum and minimum non-zero absolute value of the QUBO matrix Q

chain strength 1 Relative coupling strength between qubits that form a chain and qubits in different chains
annealing time 100 Time (in µs) at which the measurement is performed after starting the annealing schedule

Fig. 4. Training setup. The OVO and CS methods have been trained on
a training set of N examples. For QMSVM, a subset of M examples is
selected and used by the annealing algorithm, while the solution combination
is performed based on the accuracy obtained on the whole training set.

Two different datasets are considered, i.e., SemCity Toulouse
[48] (hereafter “Toulouse”) and ISPRS Potsdam [49] (hereafter
“Potsdam”). Tab. II describes the selected datasets. While both
represent urban areas, the two datasets differ in the features
and the ground resolution. Toulouse is based on 8-band
Worldview-2 data. We chose the 50 cm multispectral images
obtained through pansharpening of the 2 m multispectral data
with 50 cm panchromatic images using the Band-Dependent
Spatial-Detail (BDSD) algorithm. Potsdam is based on aerial
data collection and, on top of 4 spectral bands, a Digital
Surface Model (DSM) is provided, which is used as a feature.
The complete ground truths are obtained by expert annotators.
For each dataset, 5 training sets of N examples are randomly
initialized, from the training tiles indicated in Tab. II..

The experiments have been performed on a real quantum
device, JUPSI [50], a D-Wave Advantage quantum annealer
located at Forschungszentrum Jülich. To access the machine,
the Advantage system5.4 cloud solver has been used. Given
the memory and connectivity limitation of the machine, the
training set {Xtr, Y tr} defined in Sect. III-A is initialized as
a subset of M examples from the total number of training
examples N . The training subset is computed through an
example selection step. Two selection methods have been
tested:

• Random selection: M random examples are selected from
the whole training set. It is a fast and straightforward
method, enforcing no selection criterion.

• K-means selection: k-means clustering [51] is applied to
each of the C classes, with k = M

C , and the obtained
M centroids are used as selected examples. It is inspired
by undersampling techniques in imbalanced classification
[52]. In principle, the method is designed to select mean-
ingful examples, covering the whole feature domain.

The whole training set is then used as the validation set
{Xval, Y val} for the solution combination, introduced in
Sect. III-E3. The threshold accuracy, which determines which
solutions are discarded in the combination, has been computed
as:

threshold = 0.2 ·min(accuracy) + 0.8 ·max(accuracy). (17)

The results are compared with three standard implementa-
tions of the multiclass SVM, i.e., the OVO and OVA imple-

3Note that the training sets are named differently here. In the formulation,
the general terms ”training set” and ”validation set” are used, coherently
with ML literature. Here, the terms ”training subset” and ”training set” are
used respectively, coherently with our training setup, which is far from being
universal.
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TABLE IV
RESULTS OF ACCURACY, F1 SCORE AND EXECUTION TIME FOR OVO

AND QMSVM.

Solver N M Accuracy F1 t (s)
Toulouse - best accuracy, maximum N

OVO 20000 - 0.8598 0.8612 248.02

OVA 20000 - 0.8606 0.8617 595.50

CS 20000 - 0.8213 0.8279 1007.19

QMSVM (random) 20000 60 0.8663 0.8721 245.39

QMSVM (k-means) 20000 60 0.8133 0.8178 85.72

Potsdam - best accuracy, maximum N
OVO 15000 - 0.8521 0.8530 580.17

OVA 15000 - 0.8514 0.8523 1317.35

CS 15000 - 0.8226 0.8362 2708.62

QMSVM (random) 15000 60 0.7695 0.7840 84.20

QMSVM (k-means) 15000 60 0.8123 0.8143 58.89

mentation in Scikit-learn [53] and a CS SVM implementation
in C++ [54]. A Gaussian kernel with parameter γ is chosen.
The training setup is depicted in Fig. 4.

B. Parameters

In Tab. III the parameters of the problem are described.
The parameters β, µ and γ are set through a simple grid
search optimization, training the model on a smaller training
subset of 20 examples and validating it on the whole training
set. Different values of N are chosen in order to analyze the
performance of the method by varying the number of available
examples. The highest tested value is N = 20000 for Toulouse
and N = 15000 for Potsdam. The parameters B, M and
max min ratio are related to the main limitation of the QA,
i.e., the number of qubits and couplers. As previously dis-
cussed, finding an embedding on the given qubit architecture
is required for solving the QUBO problem. This is achieved in
case Q is sufficiently small, sufficiently sparse, or both. Using
only the selected training subset, the dimension of Q is MCB.
Thus, M is limited, which is the reason the QA is unable
to use an arbitrarily large training set and example selection
is performed in the first place. To maximize the number of
examples fitting in the QA, the remaining parameters are kept
low, i.e., C = 3 and B = 2. Considering a higher number
of classes, i.e., C > 3, would require using a lower number
of examples M , which degrades the overall performance.
Regarding sparsity, a straightforward operation is performed,
i.e., pruning the values of Q below the threshold defined
by max min ratio, chosen empirically. This simplification
is acceptable, as relatively low values would be mapped to
relatively low strengths in the QA, which mildly affect the
annealing process. The parameters num reads, chain strength
and annealing time are related to the annealer setup. Their
values are chosen empirically, finding a trade-off between total
run time and quality of the solutions on the small validation
set, testing a range of values that have been considered valid in
previous work, e.g., in [55]. The remaining parameters are set
arbitrarily. Tab. III summarizes the chosen parameter values.

C. Results

In the test phase, the methods are evaluated on a 3-class
classification problem on a selected area taken from the
dataset. For Toulouse, a 800 × 800 test area from tile 8 has
been selected and the classes ”building”, ”pervious surface”,
”water” have been considered. For Potsdam, a 1000 × 1000
test area from tile 6 10 has been selected and the classes
”building”, ”low vegetation”, ”tree” have been considered.

The method is evaluated according to both test accuracy and
execution time. For OVO, OVA and CS, training and inference
are considered. For QMSVM, the time measurement includes
preprocessing (example selection), training (annealing), post-
processing (solution combination) and inference time. Fig. 5-6
shows the ground truth of the selected area and the ground
maps obtained by OVO, CS and QMSVM. In Fig. 7-10 the
performance of the analyzed methods on the Toulouse and
Potsdam dataset is shown in terms of both test accuracy and
execution time, and for both example selection methods, i.e.,
random and k-means selection. Tab. IV summarizes the best
obtained results in terms of test accuracy, along with the
respective F1 score. Accuracy and F1 score are computed as:

accuracy =
correct predictions
no. of predictions

, F1 = averagec(F1c).

(18)
F1c is the F1 score computed for each class c with respect to
the remaining classes:

F1c =
TPc

TPc +
1
2 (FNc + FPc)

, (19)

where TP (true positive), FN (false negative) and FP (false
positive) predictions are referred to the class c. For each
method, the average results on the 5 training sets are plotted
and the space between the best and the worst obtained results
is highlighted. For CS, experiments on only one training set
have been performed, due to the slow training.

V. DISCUSSION

A. QMSVM on D-Wave Advantage

Running the proposed algorithm on the D-Wave Advantage
quantum annealer requires particular attention to its function-
ing. First of all, a QUBO formulation needs to be derived
from the original problem, which is not always possible. The
analytical derivation we provided successfully reframed the
problem, although with some inevitable changes and arbitrary
choices, e.g., on the optimization variable domain and the con-
straint satisfaction. Then, as previously mentioned, the main
limitation of quantum annealers is in the maximum problem
size that can be submitted. We tackle this limitation by using
only a small subset of the training set and then refining the
obtained solutions using the whole training set. Understanding
how many examples we should consider and how sparse the
QUBO matrix should be requires some experience given by
trial and error. The parameters provided can be used as a
reference for future work.
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(a) Ground truth (b) OVO (c) OVA (d) CS (e) QMSVM

Fig. 5. Toulouse - ground truth and predicted land cover maps on an 800× 800 selected area from tile 8 for one-versus-one (OVO), one-versus-all (OVA),
Crammer-Singer (CS) and Quantum Multiclass SVM (QMSVM) using N = 20000 training examples. The considered classes are ”building” (orange),
”pervious surface” (green) and ”water” (blue).

(a) Ground truth (b) OVO (c) OVA (d) CS (e) QMSVM

Fig. 6. Potsdam - ground truth and predicted land cover maps on a 1000 × 1000 selected area from tile 6 10 for one-versus-one (OVO), one-versus-all
(OVA), Crammer-Singer (CS) and Quantum Multiclass SVM (QMSVM) using N = 15000 training examples. The considered classes are ”building” (blue),
”low vegetation” (light blue) and ”tree” (green).

B. Test Accuracy

The results show that QMSVM can reach a comparable
or higher classification accuracy with respect to its classical
counterpart, i.e., CS SVM. This is a promising result, given
the limitations discussed in Sect. V-A, in particular the small
number of training examples M that QMSVM can handle
in the optimization step. The reason is that the solution
combination using N examples is able to improve the quality
of the final solution on average by increasing N , as seen in the
accuracy plots. However, the prediction accuracy of OVO and
OVA is slightly higher on average than both CS and QMSVM
for higher N . An even worse performance of QMSVM can
be clearly seen on the more complex Potsdam dataset. The
random selection method consistently outperforms k-means
selection on Toulouse, while performing slightly better on
Potsdam. This shows that k-means is inconsistent in practice
and leaves an open question on the path to follow for an
optimal example selection method. A high variance in accu-
racy with respect to the chosen training set should also be
mentioned, which makes QMSVM more unstable than the
compared standard SVM methods.

C. Time Complexity

The most remarkable result is that the execution time of
QMSVM for a high number of training examples N is lower
than the execution time of the classical methods considered in
the comparison. The different steps included in the measure-
ment of the execution time are shown in detail in Fig. 9-10. It
can be seen that the most demanding step in the QMSVM
is the annealing step. The main reason is the high time
complexity of the minor embedding algorithm [47] required

to run the QUBO problem on the quantum annealer. The
interesting results are the linear time increase for the solution
combination and the constant time for inference with respect
to N . A theoretical explanation supporting the experimental
results is summarized in the following.

In the solution combination step, the single solutions ob-
tained by the annealer define S decision functions as in Eq.
16. The decision functions are evaluated on N examples
and require the computation of the kernel values K(x, xm)
with the M examples of the training subset. The evaluation
is repeated for C classes and the class with highest value
is chosen. For evaluating all the S classifiers, O(SCMN)
operations are needed, leading to a linear time complexity
with respect to the training set size. Similarly, the classifier
used in the inference computes the kernel distances between
the I test examples and the M training subset examples and it
requires O(CMI) operations, i.e., it is independent from N . It
is worth mentioning that the speedup of QMSVM is not strictly
a quantum speedup. Instead, it is an algorithmic speedup
related to the post-processing of the annealing solutions. The
outcomes for OVO and OVA are also coherent with theory: the
training complexity of the Scikit-learn SVM implementation
is O(N3), whereas the inference time is linearly dependent on
N [56].

These results clearly show that QMSVM is a much more
scalable algorithm with respect to the considered training
examples N compared to standard multiclass SVM methods.
Given that the annealing step, which is a fixed step unrelated
to N , has the largest impact in terms of time, the overall
execution time can be regarded as near constant.
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(a) Test accuracy vs. training set size N (b) Execution time vs. training set size N

Fig. 7. Toulouse - test accuracy and execution time for Quantum Multiclass SVM (QMSVM), one-versus-one (OVO), one-versus-all (OVA) and Crammer-
Singer SVM (CS) with respect to training set size N .

(a) Test accuracy vs. training set size N (b) Execution time vs. training set size N

Fig. 8. Potsdam - test accuracy and execution time for Quantum Multiclass SVM (QMSVM), one-versus-one (OVO), one-versus-all (OVA) and Crammer-
Singer SVM (CS) with respect to training set size N .

VI. CONCLUSIONS

QMSVM serves as a preliminary framework for applying
QA to a single-step multiclass SVM algorithm, successfully
leveraging the D-Wave Advantage quantum annealer in the
training step. Although the results show that the prediction
accuracy is not always higher than standard multiclass SVM
algorithms trained on the same training set, especially using
the more complex Potsdam dataset (compared to OVO: 0.8663
vs 0.8598 on Toulouse, 0.8123 vs 0.8521 on Potsdam), the
improved scalability allows the usage of large-scale datasets,
due to the lower total execution time (compared to OVO:

85.72s vs 248.02s on Toulouse, 58.89s vs 580.17s on Pots-
dam). Further research has to be conducted, in light of the
promising achieved results. Time and accuracy analysis can
be performed on different datasets, better assessing the impact
of N and the model parameters on the prediction accuracy.
A deeper analysis of different selection methods based on
dataset representativeness, on top of the k-means method, can
improve the quality of the solutions obtained by the QA. An
improvement in performance for QMSVM is expected with
the future development of QA, as a higher memory and qubit
connectivity allows the usage of a larger training subset and
enhances the quality of the obtained solutions.
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(a) QMSVM (selection, annealing) - Execution time vs. training set size
N

(b) QMSVM (combination, inference) - Execution time vs. training set
size N

(c) OVO, OVA, CS - Execution time vs. training set size N

Fig. 9. Toulouse - execution time of each performed step, for Quantum
Multiclass SVM (QMSVM), one-versus-one (OVO), one-versus-all (OVA) and
Crammer-Singer SVM (CS), with respect to training set size N .
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[15] P. Gawron and S. Lewiński, “Multi-Spectral Image Classification with
Quantum Neural Network,” in IGARSS 2020 - 2020 IEEE International
Geoscience and Remote Sensing Symposium, 2020, pp. 3513–3516.

[16] A. Sebastianelli, D. A. Zaidenberg, D. Spiller, B. L. Saux, and S. L.
Ullo, “On Circuit-Based Hybrid Quantum Neural Networks for Remote
Sensing Imagery Classification,” IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, vol. 15, pp. 565–580,
2022.

[17] F. Fan, Y. Shi, and X. X. Zhu, “Urban Land Cover Classification from
Sentinel-2 Images with Quantum-Classical Network,” in 2023 Joint
Urban Remote Sensing Event (JURSE), 2023, pp. 1–4.

[18] M. van Waveren, M. Savinaud, G. Pasero, V. Defonte, P.-M. Brunet,
O. Faucoz, P. Gawron, B. Gardas, Z. Puchala, and L. Pawela, “Compari-
son of Quantum Neural Network Algorithms For Earth Observation Data
Classification,” in IGARSS 2023 - 2023 IEEE International Geoscience
and Remote Sensing Symposium, 2023, pp. 780–783.

[19] S. Otgonbaatar and M. Datcu, “A Quantum Annealer for Subset Feature
Selection and the Classification of Hyperspectral Images,” IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing,
vol. 14, pp. 7057–7065, 2021.

[20] ——, “Classification of Remote Sensing Images with Parameterized
Quantum Gates,” IEEE Geoscience and Remote Sensing Letters, vol. 19,
2022.

[21] S. Otgonbaatar, G. Schwarz, M. Datcu, and D. Kranzlmüller, “Quan-
tum Transfer Learning for Real-World, Small, and High-Dimensional
Datasets,” 2022, arXiv:2209.07799.

[22] R. U. Shaik and S. Periasamy, “Accuracy and Processing Speed Trade-
offs in Classical and Quantum SVM Classifier Exploiting PRISMA Hy-
perspectral Imagery,” International Journal of Remote Sensing, vol. 43,
no. 15-16, pp. 6176–6194, 2022.

[23] M. K. Gupta, M. Romaszewski, and P. Gawron, “Potential of Quantum
Machine Learning for Processing Multispectral Earth Observation Data,”
TechRxiv, 2023.

[24] A. Miroszewski, J. Mielczarek, G. Czelusta, F. Szczepanek,
B. Grabowski, B. Le Saux, and J. Nalepa, “Detecting Clouds in
Multispectral Satellite Images Using Quantum-kernel Support Vector
Machines,” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 2023.

[25] A. G. Pai, K. M. Buddhiraju, and S. S. Durbha, “Multiclass Classification
of Hyperspectral Remote Sensed Data using QSVC,” in Remote Sensing
for Agriculture, Ecosystems, and Hydrology XXIV, C. M. U. Neale
and A. Maltese, Eds., vol. 12262, International Society for Optics and
Photonics. SPIE, 2022, p. 122620P.

[26] S. Huber, K. Glatting, G. Krieger, and A. Moreira, “Quantum Anneal-
ing for SAR System Design and Processing,” in EUSAR 2022; 14th
European Conference on Synthetic Aperture Radar, 2022.

[27] S. Otgonbaatar and M. Datcu, “Quantum Annealer for Network Flow
Minimization in InSAR Images,” in EUSAR 2021; 13th European
Conference on Synthetic Aperture Radar, 2021, pp. 1–4.

[28] ——, “Natural Embedding of the Stokes Parameters of Polarimetric
Synthetic Aperture Radar Images in a Gate-Based Quantum Computer,”
IEEE Transactions on Geoscience and Remote Sensing, 2021.

[29] G. Cavallaro, D. Willsch, M. Willsch, K. Michielsen, and M. Riedel,
“Approaching Remote Sensing Image Classification with Ensembles
of Support Vector Machines on the D-Wave Quantum Annealer,” in
Proceedings of the IEEE IGARSS, 2020, pp. 1973–1976.

[30] A. Delilbasic, G. Cavallaro, M. Willsch, F. Melgani, M. Riedel, and
K. Michielsen, “Quantum Support Vector Machine Algorithms for Re-
mote Sensing Data Classification,” in Proceedings of the IEEE IGARSS.
Institute of Electrical and Electronics Engineers (IEEE), Dec. 2021.

[31] Y. Ma and G. Guo, Support Vector Machines Applications. Springer,
2014, vol. 649.

[32] F. Melgani and L. Bruzzone, “Classification of Hyperspectral Remote
Sensing Images with Support Vector Machines,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 42, no. 8, pp. 1778–1790, 2004.

[33] C.-W. Hsu and C.-J. Lin, “A Comparison of Methods for Multiclass
Support Vector Machines,” IEEE Transactions on Neural Networks,
vol. 13, no. 2, pp. 415–425, 2002.

[34] A. K. Bishwas, A. Mani, and V. Palade, “An All-Pair Quantum SVM
Approach for Big Data Multiclass Classification,” Quantum Information
Processing, vol. 17, pp. 1–16, Oct 2018.

[35] B. A. Dema, J. Arai, and K. Horikawa, “Support Vector Machine for
Multiclass Classification using Quantum Annealers,” in Proceedings of
the DEIM Forum, 2020.

[36] X.-J. Yuan, Z.-Q. Chen, Y.-D. Liu, Z. Xie, X.-M. Jin, Y.-Z. Liu, X. Wen,
and H. Tang, “Quantum Support Vector Machines for Aerodynamic
Classification,” 2022, arXiv:2208.07138.

[37] P. Rebentrost, M. Mohseni, and S. Lloyd, “Quantum Support Vector
Machine for Big Data Classification,” Physical Review Letters, vol. 113,
no. 13, 2014.

[38] R. Zhang, J. Wang, N. Jiang, H. Li, and Z. Wang, “Quantum Support
Vector Machine Based on Regularized Newton Method,” Neural Net-
works, vol. 151, pp. 376–384, 2022.
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